Stavkvantorium.ru

Технопарк Кванториум

Тензор эффективной массы

В физике твёрдого тела, эффективной массой частицы называется динамическая масса, которая появляется при движении частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы покоя электрона me (9.11×10−31 кг). Она отлична от массы покоя электрона.

Содержание

Определение

Эффективная масса определяется из аналогии со вторым законом Ньютона . С помощью квантовой механики можно показать, что для электрона во внешнем электрическом поле E:

где  — ускорение,  — постоянная Планка,  — волновой вектор, который определяется из импульса как = ,  — закон дисперсии, который связывает энергию с волновым вектором . В присутствии электрического поля на электрон действует сила , где заряд обозначен q. Отсюда можно получить выражение для эффективной массы :

Для свободной частицы закон дисперсии квадратичен, и таким образом эффективная масса является постоянной и равной массе покоя. В кристалле ситуация более сложна и закон дисперсии отличается от квадратичного. В этом случае только в экстремумах кривой закона дисперсии, там где можно аппроксимировать параболой можно использовать понятие массы.

Эффективная масса зависит от направления в кристалле и является в общем случае тензором.

Те́нзор эффекти́вной ма́ссы — термин физики твёрдого тела, характеризующий сложную природу эффективной массы квазичастицы (электрона, дырки) в твёрдом теле. Тензорная природа эффективной массы иллюстрирует тот факт, что в кристаллической решётке электрон движется не как частица с массой покоя, а как квазичастица, у которой масса зависит от направления движения относительно кристаллографических осей кристалла. Эффективная масса вводится, когда имеется параболический закон дисперсии, иначе масса начинает зависеть от энергии. В связи с этим возможна отрицательная эффективная масса.

По определению эффективную массу находят из закона дисперсии[1]

где  — волновой вектор,  — символ Кронекера,  — постоянная Планка.

Эффективная масса для некоторых полупроводников

Материал Эффективная масса электронов Эффективная масса дырок
Группа IV
Si (4.2K) 1.08 me 0.56 me
Ge 0.55 me 0.37 me
III-V
GaAs 0.067 me 0.45 me
InSb 0.013 me 0.6 me
II-VI
ZnSe 0.17me 1.44 me
ZnO 0.19 me 1.44 me


Источники:
S.Z. Sze, Physics of Semiconductor Devices, ISBN 0-471-05661-8.
W.A. Harrison, Electronic Structure and the Properties of Solids, ISBN 0-486-66021-4.
На этом сайте приводится температурная зависимость эффективной массы для кремния.

Экспериментальное определение

Традиционно эффективные массы носителей измерялись методом циклотронного резонанса, в котором измеряется поглощение полупроводника в микроволновом диапазоне спектра в зависимости от магнитного поля. Когда микроволновая частота равняется циклотронной частоте , в спектре наблюдается острый пик. В последние годы эффективные массы более обычно определялись из измерения зонной структуры с использованием методов, наподобие фотоэмиссии с угловым разрешением (ARPES) или более прямым методом: эффект де Гааза-ван Альфена.

Эффективные массы могут также быть оценены, используя коэффициент γ из линейного слагаемого низкотемпературного электронного вклада в теплоёмкость при постоянном объёме . Теплоёмкость зависит от эффективной массы через плотность состояний на уровне Ферми.

Важность

Как показывает таблица, полупроводниковые соединения AIIIBV, такие как GaAs и InSb, имеют намного меньшие эффективные массы, чем полупроводники из четвёртой группы периодической системы — кремний и германий. В самой простой теории электронного транспорта Друде дрейфовая скорость носителей обратно пропорциональна эффективной массе: , где и  — заряд электрона. Быстродействие интегральных микросхем зависит от скорости носителей, и, таким образом, малая эффективная масса — одна из причин того, что GaAs и другие полупроводники группы AIIIBV используются вместо кремния в приложениях, где требуется широкая полоса пропускания.

Ссылки

  • NSM archive
  • Pastori Parravicini, G. Electronic States and Optical Transitions in Solids. — Pergamon Press, 1975. — ISBN ISBN 0-08-016846-9 Книга содержит исчерпывающее, но доступное обсуждение темы с обширным сравнением между теорией и экспериментом.

Примечания

  1. Askerov B. M. Electron Transport Phenomena in Semiconductors, 5-е изд.. — Singapore: World Scientific, 1994. — P. 416. — ISBN ISBN 981-02-1283-6

Тензор эффективной массы.

© 2018–2023 stavkvantorium.ru, Россия, Самара, ул. Гагарина 35, +7 (846) 396-69-90

Дополнительные материалы:
(ФАЙЛ)
Тензор эффективной массы.zip

Содержание:

- Тензор эффективной массы


СКАЧАТЬ ФАЙЛ